BACKGROUND

Introduction

Jennings and Niemi's seminal study of political socialization (1974, 1981) has provided many important insights into the nature of the process by which political attitudes are molded. Its most important contributions are directly attributable to the nature of the research design, which defined the "family" as the sampling unit. By collecting data from parents and children, Jennings and Niemi were able to measure "the transmission of political values from parent to child" (1968). Furthermore, they recognized parents' political values are not necessarily homogeneous, and that parents can socialize one another as well as their children (1971).

Drawing on the portion of their sample for which mother, father, and child were interviewed (the "triples" data set),¹ Jennings and Niemi and their associates have sought to compare the relative influence of mothers and fathers on the political values of their offspring, and on each other's political values. One major focus of these analyses has been party identification; several analyses addressed the question of relative parental influence, and have tended to reach essentially the same conclusion.

¹The data used in this analysis were originally collected by the Center for Political Studies, University of Michigan, and were made available through the Interuniversity Consortium for Political and Social Research. Neither the original researchers nor ICPSR bear any responsibility for the analysis presented here. This is a revision of a paper presented at the 1983 annual meeting of the Midwest Political Science Association, Palmer House Hotel, April 20-23, Chicago, Illinois.
One problem inherent in all of the analyses I review below is that they rely on relatively crude measurements of the variables of interest. Specifically, the measurements are simple, single-item indicators. Measurement theory makes quite clear that single-item indicators tend to have substantial reliability problems (see Zeller and Carmines, 1980:48-52); substantially better measurement is achieved through multiple-item indicators, or multiple indicators of theoretical concepts. One major impact of unreliable measurement is that analyses using such measurements will show structural relationships to be weaker than they in fact are. As Dalton (1980; see also 1982) has shown, using methods that combine measurement models with structural models, the transmission of political values from parents to children may be much greater than earlier work has suggested.

Prior Analyses

Jennings and Langton (1969; see also Langton, 1969:52-83) applied a combination of correlational analysis and tabular analysis, and reported that maternal influence was greater than paternal, particularly where the parents differed. Beck and Jennings applied similar techniques, while adding to the analysis the question of the relative influence of the parents on one another. Their analysis tempers somewhat the finding that the mother is dominant in the socialization process. They found that, overall, at least for the parents of the high school class of 1965, husbands tend to have a greater influence on the political values of their wives than wives have on their husbands. Furthermore, they found that the apparent advantage of mothers in influence on their children might not really exist; in their analysis of non-homogeneous parents, there was virtually no difference in the likelihood that the child would agree with mother compared to the likelihood of agreeing with father. The different results reported in the two papers may arise from differences in the way homogeneous and heterogeneous were defined; the early analysis collapsed partisan identification into three categories (combining strong partisans, weak partisans, and leaning independents), while the later analysis retained the full seven-point scale and defined a heterogeneous couple as one that did not fall at exactly the same place on the scale.

A third analysis by Stuart Rabinowitz (1969 or 1971) applied the newly rediscovered techniques of path analysis to the dual question of parental influence on children and on one another. Figure 1 shows the results of a nonrecursive path analysis of intrafamily socialization; the analysis
From Krizter (1976:79).

Values in parentheses are unstandardized coefficients; others are standardized. The intra-parent standardized and unstandardized coefficients appear to be identical because the standard deviations for the two parents are virtually equal.

Figure 1. Rabinowitz's Intra-Familial Political Socialization Model

a From Krizter (1976:79).

b Values in parentheses are unstandardized coefficients; others are standardized. The intra-parent standardized and unstandardized coefficients appear to be identical because the standard deviations for the two parents are virtually equal.
uses the parents' fathers' party identification as instrumental variables to solve the identification problem inherent in simultaneous equation models. The results of this analysis (presented as standardized path coefficients) appear to support the argument that fathers have more influence on mothers (.58) than mothers have on fathers (.28), but it also appears to support the earlier contention that mothers have a greater direct influence on their children (.40) than do fathers (.29); the R^2 for the child equation is .41.

The most recent analysis of this question, by Niemi, Newman, and Weiner (1982) focused on the impact of both parents on a variety of the child's attitudes (1982:212). Their analysis tested several regression models including, in addition to parent's identification, a sex effect and an interaction term to test for same-sex parent effects; none of these additional effects were significant. The unstandardized coefficients for the parents were virtually identical to those shown in Figure 1: .24 for father and .37 for mother (the R^2 was .42 with sex of child as the only additional variable in the equation). A test of the hypothesis that the mother had a greater direct effect than the father yielded no support for such an argument (1982:211).

A REEXAMINATION

Dalton's analyses used Jennings and Niemi's data, but did not focus specifically on the "triples" subset that has been used to examine the relative influence of the two parents. I use the same techniques as Dalton to reexamine the relative influence of the parents on intra-familial socialization.

The Method

Dalton's work relied on a technique developed by Karl Joreskog and his associates (Joreskog, 1973; Joreskog and Sorborn, 1979; see also Long, 1976). This technique, known as LISREL (for Linear Structural RELationships), integrates measurement models (and theory) and structural models (e.g., path analysis) into a single system of analysis. Presentations of such analyses tend to rely heavily on matrix notation, but an understanding of matrix algebra is not necessary either to understand the results or to grasp the logic of what the technique entails.

The analysis presented below has two parts. First is a model of the measurement of the theoretical constructs of interest, in this case partisan identification. The theoretical constructs are seen to lead to, or "cause" (in a path
analytic sense) the observed indicators of the construct. Or, to state it the other way around, the observed indicators are a linear function of the theoretical construct(s), plus an error (or residual) term. The observed indicators can be expressed either as a simple "path" diagram, or as simple regression-like equations. Figure 2 shows a measurement model involving a single theoretical construct (C) and three indicators (I_1, I_2, and I_3). This same model can be expressed as a set of three equations (for the _i_th observation):

\[
I_{1i} = d_1 C_1 + E_{1i} \\
I_{2i} = d_2 C_1 + E_{2i} \\
I_{3i} = d_3 C_1 + E_{3i}
\]

The d's and the E's represent the path coefficients and the measurement errors. The model can be extended to more complex models involving multiple constructs (either correlated or uncorrelated), to correlations among the error terms, and/or to the imposition of a variety of constraints on the coefficients of the model (i.e., the linkages between the constructs and the indicators, or among the variances and covariances in the model).

The second part of the model involves a set of structural equations (i.e., a more traditional path model) linking the various theoretical constructs. The coefficients (b's) for the structural model can be interpreted like any other regression coefficient (i.e., a unit change in the predictor variable produces b change in the dependent variable). The equations in the structural model can be independent or correlated, the equations can involve two-way causation, and/or the coefficients can be subjected to a variety of constraints (e.g., certain coefficients can be fixed equal to zero, or two or more coefficients can be constrained to be equal to one another). The theoretical constructs in the structural model can be measured directly (i.e., the construct is set to be identical to a single indicator), or can be formally "unmeasured" (i.e., the construct is not identical to any single indicator but has multiple indicators or, in special cases, is imperfectly measured by a single indicator).

The advantage of the Joreskog technique is that it obtains simultaneously a solution for the structural equations model and the measurement model. Furthermore, it provides a measure of the "goodness of fit" (GOF) of the overall model to the observed data as well as more traditional R^2 statistics. The GOF statistic, which is in the
Figure 2. A Simple Measurement Model
form of a statistic with a chi square distribution, is usually employed to compare the relative quality of the fit of several models. It can also be used to test specific hypothesis represented by the comparison of two models where one model imposes a set of constraints on a previous model. We use this latter feature to test some specific hypotheses about intra-familial socialization.

Data and Indicators

The data used are the "triples" subset from the Jennings and Niemi data. We use the Joreskog method to examine the structural model first analyzed by Rabinowitz (see Figure 1), with one extension: we have included in the model the parents' mothers as well as the parents' fathers (see Beck and Jennings, 1975). This modified structural model is shown in Figure 3. Additionally, as we work through our analysis, we permit the disturbance ("residual") terms to be correlated; this is indicated in Figure 3 by the curved, broken double-headed arrows.

The indicators we use in our measurement model are all direct measures of party identification. In his reanalysis of parental transmission, Dalton (1980, 1982) used the respondent's report of his or her own party identification plus candidate preference from the 1964 election as indicators. By using the "triples" data, we can obtain three separate reports of the party identification of each member of the triple, since each respondent was asked not only about his or her own party identification but also about the party identification of the other two persons in the family who were interviewed. Additionally, the two parents in each family were asked about the party identification of both of their own parents. Thus, from each triple, there are thirteen separate reports of party identification. Since we have only one report of party identification for each of the grandparents, it will be necessary to treat the grandparents' party identification as identical to the reports of that identification. The measurement model we posit for party identification of each of the other three members of the family unit (i.e., the father, mother, and child) is shown in Figure 2; that is, each party identification has three indicators: the reports by the mother, by the father, and by the child. We initially specify that the measurement errors for the nine indicators are all uncorrelated; as we shall see, when we relax this assumption and permit some specific correlations (correlations that are intuitively meaningful) we substantially improve the fit of our model. Last, since all of our variables are on the same
We have omitted from the figure the unanalyzed correlations among the members of the grandparent generation.

Figure 3. Structural Model for Analysis of Intra-Familial Socialization
seven-point scale, or were recoded to fall on that scale, we perform an analysis on unstandardized data and report unstandardized coefficients. Let us now turn to the actual analysis.

Analysis I

The first model we examine is the structural model in Figure 3 (assuming uncorrelated residuals) combined with the simple measurement model in Figure 2. This model will serve as the baseline against which we compare the other models we examine in this section. The goodness-of-fit (GOF) statistic for this model is 317, with 55 degrees of freedom. The degrees of freedom indicate the amount of information we have not "used up" in specifying the model; our goal is to get a model that fits the data well, while using up as few of the degrees of freedom as possible (there are a total of 91 potential degrees of freedom in the system). The column labeled "Model 1" in Table 1 shows the estimates of the structural parameters we obtained for this model. (See the Appendix for estimates of the measurement parameters for selected models; we will not discuss them because they are not particularly informative for our analysis.) Overall, the results obtained with Model 1 are consistent with those for Rabinowitz's model (Figure 1); the father has less influence on the child than does the mother, but the father has more influence on the mother than mother has on father.

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
<th>Model 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF→F</td>
<td>.25</td>
<td>.25</td>
<td>.26</td>
<td>.25</td>
<td>.27</td>
</tr>
<tr>
<td>FM→F</td>
<td>.16</td>
<td>.16</td>
<td>.17</td>
<td>.16</td>
<td>.17</td>
</tr>
<tr>
<td>MF→M</td>
<td>.16</td>
<td>.17</td>
<td>.17</td>
<td>.16</td>
<td>.17</td>
</tr>
<tr>
<td>MM→M</td>
<td>.11</td>
<td>.11</td>
<td>.11</td>
<td>.11</td>
<td>.12</td>
</tr>
<tr>
<td>M→F</td>
<td>.30</td>
<td>.28</td>
<td>.27</td>
<td>.30</td>
<td>.25</td>
</tr>
<tr>
<td>F→M</td>
<td>.71</td>
<td>.69</td>
<td>.69</td>
<td>.71</td>
<td>.67</td>
</tr>
<tr>
<td>F→C</td>
<td>.32</td>
<td>.45</td>
<td>.36</td>
<td>.34</td>
<td>.32</td>
</tr>
<tr>
<td>M→C</td>
<td>.58</td>
<td>.26</td>
<td>.36</td>
<td>.34</td>
<td>.32</td>
</tr>
<tr>
<td>R²_F</td>
<td>.60</td>
<td>.59</td>
<td>.58</td>
<td>.60</td>
<td>.55</td>
</tr>
<tr>
<td>R²_M</td>
<td>.83</td>
<td>.83</td>
<td>.83</td>
<td>.83</td>
<td>.78</td>
</tr>
<tr>
<td>R²_C</td>
<td>.79</td>
<td>.77</td>
<td>.78</td>
<td>.78</td>
<td>.75</td>
</tr>
<tr>
<td>GOF</td>
<td>317</td>
<td>313</td>
<td>314</td>
<td>317</td>
<td>61</td>
</tr>
<tr>
<td>df</td>
<td>55</td>
<td>52</td>
<td>53</td>
<td>55</td>
<td>47</td>
</tr>
</tbody>
</table>
The coefficients from the grandfathers are lower in Model 1 than those shown in Figure 1, but this probably indicates that the influence is now shared by the grandfather and the grandmother; it is worth noting that in Model 1 the father's parents appear to have more influence on him than the mother's parents have on her, and this is consistent with a comparison of the relative influence of the grandfathers (Figure 1). The major difference between the results for Rabinowitz's model (and Niemi et al.'s models) and those obtained here are the R^2's; here the R^2's are between .60 and .83, while the R^2's for the equations corresponding to Figure 1 range between .29 and .41. Thus, relying on multiple indicators appears to improve markedly our ability to account for party identification; clearly, the degree of congruity between a child's partisan identification (in 1965) and that of his or her parents is much greater than Niemi et al. suggest. At the same time, we have found no novel substantive conclusions about the effects of each of the parents.

Let us now relax the constraint that the disturbance (residual) terms are uncorrelated. In doing this, we give up three degrees of freedom. The results for this model are shown in Table 1 under the heading Model 2. This model has a GOF statistic of 313, with 52 degrees of freedom (three less than Model 1). The difference between the two GOF statistics, about three with three degrees of freedom, has a chi square distribution; in this case, the difference is not statistically significant, indicating that the correlations among the disturbances are not significantly different from zero and can be safely omitted. However, when we examine the actual estimates of the parameters shown in Table 1, there are some differences between Model 1 and Model 2 that are substantively important. Specifically, where in Model 1 the influence of mother on child (M----C) appeared to be greater than the influence of father on child (F----C), in Model 2 the reverse is the case, and the difference between mother's and father's influence is greater in Model 2 than in Model 1. This apparent turnaround is surprising because there are no statistically significant differences between the two models (as indicated by the comparison of the two GOF statistics). This indicates that, as Niemi et al. suggest (1982:211), the relative influences of the mother and father may in fact be equal. This conclusion can easily be tested by constraining the influences of the parents to be equal and comparing the GOF statistic for a model with this constraint to a model that is identical except that it relaxes the constraint (e.g., Model 1 or Model 2). Models 3 and 4, shown in Table 1, impose the equality constraint;
Model 3 is comparable to Model 2 (i.e., it assumes correlated disturbances), and Model 4 is comparable to Model 1 (i.e., it assumes uncorrelated disturbances). A comparison of the relevant pairs of GOF statistics confirms the interpretation that, at least for this sample, there is no statistical evidence that the parent of one sex has a greater influence on the child's partisan identification than does the parent of the other sex.22

These substantive findings are important, but we are still left with a relatively poor GOF statistic for Model 4. Let us see if we can refine the measurement model in a way that is both intuitively pleasing and that substantially improves our fit to the data. Recall that our measurement model assumed that the measurement errors for the various observed indicators were uncorrelated. Since each respondent provided three of these indicators, however, it is sensible that the "within respondent" errors might be correlated (e.g., a respondent may tend to see the world through glasses with a Democratic tint to them). Model 5, shown in Table 1, allows for within-respondent correlations among the measurement errors; this model makes the same "structural" assumptions as Model 4 (i.e., uncorrelated disturbances, equal parental influences on the child.)23

The GOF statistic for this model is 61, with 47 degrees of freedom; given that GOF has a chi square distribution, this model appears to fit the data relatively well (much better than Models 1 through 4). At the same time, the structural parameters for Model 5 are essentially the same as those for Model 4, and thus our substantive conclusions are the same: fathers influence mothers more than mothers influence fathers (at least with regard to partisan identification during the 1950's and 60's), but there is no detectable difference in the influences of the two parents on the child.

Analysis II

There is a second question, considered in some earlier analyses of the Jennings and Niemi data, that the Joreskog method can address: what happens when we control for the sex of the child? Does the parent of the same sex as the child have more influence on the child than the opposite-sex parent? Langton (1969) suggests that there is more mother-daughter congruence than father-daughter congruence, but that there is no noticeable difference between father-son and mother-son congruence; Niemi et al. (1982:209) suggest that the interaction between sex of the child and each of the parents' identifications has no effect on the child's identification. Joreskog's technique provides an ideal way
to explore male-female differences in socialization, since we can carry out a simultaneous analysis for two (or more) groups, imposing equality constraints across groups where desirable (for an example, see Mare and Mason, 1980). For this analysis, we use a single measurement model: the correlated error model with which we concluded the previous section.

Results for the "two group" analysis are presented in Table 2. Model 6 allows all of the parameters to differ for males and females ("completely free"), and allows the influences of the mother and father on the child to differ. This analysis would appear generally to support Langton's conclusion that the same-sex parent, particularly for female pairs, has more influence than the opposite-sex parent. The influence of fathers on sons is .35 and the influence of mothers on daughters is .46, compared to .25 for mothers on sons and .23 for fathers on daughters. To test that these differences are "real" rather than statistical artifacts, a second model, Model 7, was examined; this model constrained the parental influences to be equal. An examination of the relevant pairs of GOF statistics (69.32 and 69.80 for males, 48.18 and 50.27 for females) indicates that the apparent differences can be attributed to the sampling process; the observed relationships are not sufficiently strong to permit us to conclude that there are differences in same-sex versus opposite-sex parental influences.

There are some other notable differences in the results for male and female children. First, the mother of a female child appears to have more influence on the father than does the mother of a male child. Second, the grandfather of the same-sex parent appears to stand out as the single most important influence among the grandparent generation; thus the maternal grandfather of girls is most important while the paternal grandfather of boys is most important. All of these results seem a bit strange in light of the fact that many of these families probably have children of both sexes, and there is no strong theoretical basis to believe that the sex of the child should have a great deal of influence on parental political socialization (particularly with regard to the relative influence of the parents' parents). Consequently, we looked at another model, Model 8, in which the parameters for the two groups were constrained to be invariant across groups. A test of the hypothesis that there are no differences between the two groups is obtained by comparing the GOF statistic for Model 7 (in which there are no constraints across groups) to the GOF statistic for Model 8 (where the parameters are constrained to be invariant across groups). The resulting statistic, 37.06 (157.13-120.07),

<table>
<thead>
<tr>
<th></th>
<th>Model 6 Completely Free</th>
<th>Model 7 Partially Constrained</th>
<th>Model 8 Completely Invariant</th>
<th>Model 9 Mixed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>FF→F</td>
<td>.38</td>
<td>.16</td>
<td>.38</td>
<td>.15</td>
</tr>
<tr>
<td>FM→F</td>
<td>.17</td>
<td>.18</td>
<td>.17</td>
<td>.18</td>
</tr>
<tr>
<td>MF→M</td>
<td>.12</td>
<td>.22</td>
<td>.12</td>
<td>.22</td>
</tr>
<tr>
<td>F→M</td>
<td>.70</td>
<td>.62</td>
<td>.70</td>
<td>.62</td>
</tr>
<tr>
<td>F→C</td>
<td>.35</td>
<td>.23</td>
<td>.30</td>
<td>.34</td>
</tr>
<tr>
<td>M→C</td>
<td>.25</td>
<td>.46</td>
<td>.30</td>
<td>.34</td>
</tr>
<tr>
<td>R^2_F</td>
<td>.50</td>
<td>.61</td>
<td>.50</td>
<td>.62</td>
</tr>
<tr>
<td>R^2_M</td>
<td>.75</td>
<td>.80</td>
<td>.75</td>
<td>.80</td>
</tr>
<tr>
<td>R^2_C</td>
<td>.74</td>
<td>.78</td>
<td>.74</td>
<td>.77</td>
</tr>
</tbody>
</table>

GOF
Separate 69.32 48.18 69.80 50.27

df
Separate 46 46 47 47

GOF
Total 117.50 120.07 157.13 151.76

df
Total 92 94 128 124

has a chi square distribution with 34 degrees of freedom, indicating that, overall, there are no significant differences in the results for families of males and the results for families of females. Model 9 represents one final test of this question; in this model all parameters are constrained to be invariant across the two groups, except for the parental influences on the child and the variances of the disturbance terms for the equations. The GOF statistic for this model does not differ significantly from the GOF statistic for the completely invariant model (5.37, 4 df). Thus, we must
conclude that this analysis fails to support the argument that there are differences between males and females in the way in which they acquire a partisan identification during their childhood; at the same time, the evidence consistently indicates that there are differences in relative influence of husband and wife on one another (see note 22) with regard to partisan identification—at least for the time period covered by the original Jennings and Niemi data.

SUMMARY AND CONCLUSION

Substantive knowledge, both theoretical and empirical, is constantly evolving, both theoretically and empirically. At the same time, empirical methods are also improving. In this paper we have returned to findings now ten to fifteen years old and applied new techniques of analysis. The Joreskog method for analyzing linear structural relationships seems ideally suited for working with the Jennings and Niemi socialization data, since it allows us to develop an intuitively pleasing model of the measurement of party identification and to undertake tests of some of the arguments advanced in earlier analyses of these data.

The results obtained with this relatively new technique are somewhat at odds with the thrust of the early findings. We find no support for the argument that the mother has more influence on the child's partisan identification than does the father; this conflicts with the findings reported by Jennings and Langton, and by Rabinowitz, but it is not wholly inconsistent with the later analysis by Beck and Jennings or with Niemi et al.'s recent analysis. Furthermore, we find no support for the argument that looking at the influence of the same-sex or opposite-sex parent helps clarify our understanding of parental influence on the child's partisan identification. The one major finding reexamined here that does hold up is the greater influence of the father on the mother as compared to the influence of the mother on the father.

One final point is worth noting. This analysis was originally undertaken to provide an example for use in training graduate students in the Joreskog technique. Earlier work with these data provided no basis for expecting that our results would differ in important ways from the previous analyses of the data, particularly with regard to the relative influences of the mother and father on the child (we did expect to show that the relationships were stronger than earlier results suggested). The results of Model 2 (see Table 1) initially came as quite a surprise, and it took a bit of thought and discussion to sort out the
fact that the results did not indicate a reversal in the relative influences of the two parents but rather a lack of difference in the relative influences. In going back and reviewing the previously published analyses, it was striking to note the general absence of tests of statistical significance (Niemi et al. represent a notable exception to this), particularly the absence of any formal test of the finding that mothers were more influential than fathers. If any of the early analyses had undertaken such a test, the lack of a significant difference would have been obvious. We should recall the first lessons of inferential statistics before we announce findings that may become the conventional wisdom.

NOTES

1. For one third of their sample, Jennings and Niemi sought to obtain interviews with child and mother; for another third, with child and father; and for the remaining third, with child and both mother and father. The final data set, available through ICPSR, includes 430, "triples" in which all three interviews were completed; the weighted N is 531. For a related analysis, based on a different data set for which only one parent was interviewed, see Niemi, Ross, and Alexander (1978). Acock and Bengtson (1978) report an analysis based on a different "triples" data set.

2. The party identification measures are based on two questions, but the second question in this case does not represent an "independent" indicator.

3. One of Niemi et al.'s major points is that Acock and Bengtson (1978) overestimate the relationship between parental attitudes and the child's attitudes. Since Acock and Bengtson's analysis is based largely on multi-item indicators, it is in fact likely that Niemi et al. have underestimated the degree of relationship by relying on single item indicators (on this general point see Connell, 1972:327).

4. Beck and Jennings relied on Pearson's product moment correlation, while the earlier analysis by Jennings and Langton used tau b.

5. One other difference between the two analyses was that the earlier analysis omitted cases where one of the three did not respond in a way that permitted placement on the regular seven-point scale, while the later analysis treated those respondents as equivalent to independents.
6. Rabinowitz's own analysis has never actually been published, and the date of her unpublished paper has been variously reported as 1969 or 1971. Her analysis has been replicated and published in whole or in part by Asher (1976: 35-42, 56-57) and by Kritzer (1976:78-83). The results reported here are from Kritzer.

7. Unstandardized coefficients are shown in parentheses in Figure 1.

8. For a brief description of an analysis of the influence of one spouse on the other based on another data set, see Weiner (1978).

9. A test of the hypothesis that the mother and father coefficients shown in Figure 1 are significantly different yielded a t statistic of 1.19.

10. The technique is known by the rubric of LISREL, which stands for Linear Structural Relationships, and is also the name of Joreskog and Sorbom's (1978) computer program for carrying out this analysis.

11. Joreskog relies on a set of Greek symbols to represent the components of his model; I have avoided that usage in hopes of averting the confusion it often generates. The "standard LISREL" equation, in matrix notation, would be $y = \lambda \eta + \varepsilon$.

12. For an exposition of many of these models, see Alwin and Jackson, 1980.

13. We have used the covariance matrix as the basis of analysis (rather than correlations). Using the correlation matrix yields virtually identical results, because all variables are scaled on the same metric. We worked with the N at 430 (which is the true N) rather than 531 (the "weighted" N). We followed Beck and Jennings (1975:107) in treating nonstandard or missing responses as the same as "Independent."

14. Missing information for grandparents was recoded to "Independent" to avoid a wholesale loss of observations.

15. This is the "FIXEDX" model within the LISREL IV program.
16. Acock and Bengtson (1980) have shown empirically that there are differences in the way self-reports and others-reports of political attitudes work in predictive equations; however, this should not be a problem in the analysis here because (1) Acock and Bengtson focused on more ambiguous "opinion" type items (e.g., treatment of college demonstrators) than partisan identification, and (2) the measurement model we use does not presume that the measures are "parallel" or "equivalent" (see Alwin and Jackson, 1980).

17. Some of the variables were originally recorded on a three-point scale (Democrat, Independent, Republican); these were recoded to weak Democrat, nonleaning Independent, and weak Republican.

18. The measurement model of Figure 2 is repeated three times in our actual model: once for each of the members of the triple.

19. Those are obtained from the LISREL IV program by subtracting the standardized values from the diagonal of the psi matrix from one.

20. The R^2's for Figure 1 are obtained by subtracting the square of each of the residual terms from one.

21. A comparison of each of these "correlations" to its standard error bears out the conclusion that the correlations are not significant.

22. It is worth noting that a comparable test of the relative influences of the parents on each other was also carried out. It showed that the difference in the parents' influence on one another was statistically significant, with a chi square of about 17 (one degree of freedom).

23. Retests of the equality constraint and the constraint of uncorrelated disturbances confirmed our earlier conclusions on these issues.

24. It should be noted that, as the leading edge of the postwar baby boom, the class of 1965, which was the focus of the Jennings and Niemi study, was probably unique in terms of numbers of members who were the oldest child in their families.
25. Beck and Jennings attribute the difference to the way variables are operationalized (1975:94-95, n17). However, Rabinowitz's model (Figure 1) uses the same operational procedure as Beck and Jennings (1975:107), and its results are more consistent with the findings of Jennings and Langton (1969) than with those of Beck and Jennings.

REFERENCES

Acock, Alan C. and Vern L. Bengtson.

Alwin, Duane F. and David J. Jackson.

Asher, Herbert B.

Beck, Paul Allen and M. Kent Jennings.

Connell, R. W.

Dalton, Russell J.

Jennings, M. Kent and Kenneth P. Langton.

Jennings, M. Kent and Richard Niemi.

Joreskog, Karl.

Joreskog, Karl and Dag Sorbom.

Kritzer, Herbert M.

Langton, Kenneth P.

Long, J. Scott.
Mare, Robert D. and William M. Mason.

Rabinowitz, Stuart M.

Welner, Terry S.

APPENDIX

Selected Measurement Model Results

<table>
<thead>
<tr>
<th>Subject</th>
<th>Source</th>
<th>Model 3</th>
<th></th>
<th>Model 5</th>
<th></th>
<th>Model 7</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>λ</td>
<td>θ</td>
<td>λ</td>
<td>θ</td>
<td>M</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>1.00*</td>
<td>.95</td>
<td>1.00*</td>
<td>.85</td>
<td>1.00*</td>
<td>.78</td>
</tr>
<tr>
<td>F</td>
<td>M</td>
<td>1.08</td>
<td>.88</td>
<td>1.07</td>
<td>.88</td>
<td>1.06</td>
<td>.82</td>
</tr>
<tr>
<td>F</td>
<td>C</td>
<td>.92</td>
<td>1.56</td>
<td>.86</td>
<td>1.73</td>
<td>.84</td>
<td>.89</td>
</tr>
<tr>
<td>M</td>
<td>M</td>
<td>1.00*</td>
<td>.88</td>
<td>1.00*</td>
<td>.87</td>
<td>1.00*</td>
<td>.97</td>
</tr>
<tr>
<td>M</td>
<td>F</td>
<td>1.01</td>
<td>1.14</td>
<td>1.02</td>
<td>1.06</td>
<td>1.07</td>
<td>.99</td>
</tr>
<tr>
<td>M</td>
<td>C</td>
<td>.84</td>
<td>1.80</td>
<td>.79</td>
<td>1.95</td>
<td>.75</td>
<td>.83</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>1.00*</td>
<td>1.48</td>
<td>1.00*</td>
<td>1.62</td>
<td>1.00*</td>
<td>1.59</td>
</tr>
<tr>
<td>C</td>
<td>M</td>
<td>.58</td>
<td>.59</td>
<td>.62</td>
<td>.57</td>
<td>.64</td>
<td>.60</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>.54</td>
<td>.62</td>
<td>.59</td>
<td>.60</td>
<td>.62</td>
<td>.55</td>
</tr>
</tbody>
</table>

Covariances of Measurement Errors

<table>
<thead>
<tr>
<th></th>
<th>Father</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Males</td>
<td>Females</td>
<td></td>
</tr>
<tr>
<td>F, C</td>
<td>.06**</td>
<td>-.03</td>
<td>.15</td>
</tr>
<tr>
<td>F, M</td>
<td>.17</td>
<td>.15</td>
<td>.14</td>
</tr>
<tr>
<td>M, C</td>
<td>.11</td>
<td>.04</td>
<td>.19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mother</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Males</td>
<td>Females</td>
<td></td>
</tr>
<tr>
<td>F, C</td>
<td>.03</td>
<td>.02</td>
<td>.08</td>
</tr>
<tr>
<td>F, M</td>
<td>.28</td>
<td>.30</td>
<td>.31</td>
</tr>
<tr>
<td>M, C</td>
<td>.03</td>
<td>-.02</td>
<td>.11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Child</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Males</td>
<td>Females</td>
<td></td>
</tr>
<tr>
<td>F, C</td>
<td>.77</td>
<td>.80</td>
<td>.72</td>
</tr>
<tr>
<td>F, M</td>
<td>1.00</td>
<td>1.04</td>
<td>.96</td>
</tr>
<tr>
<td>M, C</td>
<td>.76</td>
<td>.62</td>
<td>.93</td>
</tr>
</tbody>
</table>